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ABSTRACT

In this paper, we prove fixed point results of Kannan and Reich interpolative contraction in triple contraction metric like

spaces. Moreover, examples have also been provided to underpin and exemplify the results.
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INTRODUCTION

Fixed point theory is indeed a rich and expansive area of study that has significant applications across various fields, such
as mathematical sciences, engineering, and computer science. The foundational work of Banach [1], particularly his
introduction of the Banach contraction principle, laid the groundwork for understanding fixed points in complete metric

spaces.

The Banach contraction principle states that if a mapping T on a complete metric space (H, P) is a contraction
mapping (i.e., there exists a constant k & (0,1) such that P(To, Tp) <k P(o, p), for all 5, p € H then T has a unique fixed
point o* such that To* = ¢*). This theorem not only serves as a fundamental result in the analysis of dynamical systems
but also finds utility in the convergence of iterative methods, making it indispensable in numerical methods and algorithm
design.SinceBanach's time, the theory has undergone extensive generalization and refinement. Researchers have explored
conditions under which fixed points exist in various types of spaces, including topological spaces, partially ordered sets,

and more generalized metric spaces. (see-[ 1-27 ).

The increasing interest in b-metric spaces has been marked by significant contributions from researchers such as
Bakhtin [2] and Czerwik [3], which have laid the groundwork for numerous fixed-point theorems. Subsequently, Kamran
et al.[5] introduced the concept of extended b-metric spaces, which emphasizes a nuanced control of the triangle inequality,
moving beyond the traditional reliance on control functions in contractive conditions .Building on these foundational
concepts, Abdeljawad et al.[4] presented double controlled metric spaces, leading to a wealth of new fixed-point results.
The introduction of triple controlled metric spaces by Tasneem et al.[26] further enriched the study of these mathematical

structures, resulting in additional theorems and a deeper comprehension of the layered relationships in metric-like spaces.
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2 Shyam Sunder Prasad Singh

Harandi [22] proposal of metric-like spaces serves to generalize traditional metric spaces, while Mlaiki [19] work
on controlled metric-like spaces makes allowances for non-zero self-distance, expanding the conceptual scope of these
spaces. This evolution has led to the formulation of triple controlled metric-like spaces (see- [25]), which aim to foster the

development of new fixed-point theorems and demonstrate practical applications through concrete examples.

In a contemporary context, Singh et al.[20] have introduced various new interpolative contractions—such as the
(A, a)-interpolative Kannan contraction, the (A, a, b)-interpolative Kannan contraction, and the (A, a, b, c)-interpolative

Reich contraction within complete controlled metric spaces.

This article extends the existing body of knowledge by providing fixed-point results for the Kannan and Reich
interpolating contractions within the framework of triple controlled metric-like spaces. Accompanying this theoretical
exposition, practical examples are offered to demonstrate and elucidate the findings, highlighting the relevance and

practical implications of these advanced mathematical frameworks in both theoretical exploration and applied scenarios.
PRELIMINARIE

The definitions provided describe various structures related to generalized metric spaces, each exhibiting certain controlled

behaviors governed by specific functions. Below, I provide a summary of the definitions:
Summary of Definitions
Definition [2] (b-Metric Space)
Let H# ¢ ans s>1.A function P, : Hx H — [0,+ o) is called a b- metric if it satisfies:
e Non-negativity:Py( p, 6) >0,
e Identity of indiscernibles: Py( p, 6) =0 if and only if p = o,
e Symmetry: Py(p, 6) = Py( 0, p),
e Boundedness:Py( p, o) <s[ Py(p,d)+ Py 5,0)], forall p,o,deH.
The pair (H, Py) is a b-metric space.
Definition [5] (Extended b-Metric Space)
Let H# ¢ and a: Hx H — [1,+ ) is a function. Let P, : Hx H — [0,+ o) be a function is an extended b- metric if:
e Non-negativity.
e Identity of indiscernibles.
e  Symmetry.
e Extended boundedness.P.,( p, 6) <a(p, 6) [ Pep( p, 8) + Pep( 6, 0)], forall p, 5, 6 € H.

The pair (H, P,) is an extended b-metric space.
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Fixed Point Results in Triple Controlled Metric-Like Spaces 3

Definition [6] (Controlled Metric Space)
Let H# ¢ and a: Hx H — [1,+ ) is a function. Let . : Hx H — [0,+ o0) be a function is a controlled metric if:
e Non-negativity.
e Identity of indiscernibles.
e  Symmetry.
e Controlled boundedness.P.( p, 5) <a(p, d) P p, d) +a(d, o) P.( 8, 5)], forall p, 5,6 ¢ H.
The pair (H, P.) is a controlled b-metric space.
Definition [7] (Double Controlled Metric Space)
Let H# ¢ and a,f: Hx H — [1,+ =) is a function. Let P4.: Hx H — [0,+ o) be a function is a double controlled metric if:
e Non-negativity.
e Identity of indiscernibles.
e  Symmetry.
e  Doublecontrolled boundedness.Py.( p, 6) <a(p, 8) Pyc( p, 8) +P(5, o) Py.(d, 6 )], for all p, 5, & € H.
The pair (H, Pq) is a double controlled b-metric space.
Definition [24] (Triple Controlled Metric Space)
Let H# ¢ and a,B,y: Hx H — [1,+ ) is a function. Let ,.: Hx H — [0,+ o) be a function is a triple controlled metric if:
e Non-negativity.
e Identity of indiscernibles.
e  Symmetry.

e  Triple controlled boundedness.P( p, 6) <a(p, d) P( p, 8) +P(5, 0) Pi.( 3, 0) +a(0, 5) Py( I, 0)], forall p, 5, 5,0
e H.

The pair (H, P,.) is a triple controlled metric space.
Definition 2.6[19] (Controlled Metric - Like Space)
Let H# ¢ and a: Hx H — [1,+ ) is a function. Let P, : Hx H — [0,+ o0) be a function is an controlled metric-like if:
e Py(p,0)=0,
o Py(p,o)=0implies p =0,
* Pu(p,0)=Pu(o,p),
o Py(p,0) <ap,d) Pu(p,d)+a(do) Py d,0),forall p,c, deH.

The pair (H, P.) is called a controlled metric-like space.
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Definition [21] (Double Controlled Metric - Like Space)

Let H# ¢ and o,B: H x H — [1,+ o) is a function. Let P4,: Hx H — [0,+ ) be a function is an double controlled metric-

Non-negativity.

Identity of indiscernibles (implies condition).

Symmetry.

Doublecontrolled boundedness.Py( p, 6) <o(p, 6) Py p, ) +B(J, 6) Pya( d, 0 )], for all p, 5, & & H.

The pair (H, Pq) is a double controlled metric- like space.

Definition 2.8[25] (Triple Controlled Metric - Like Space)

Let H# ¢ and o,B,y: H x H — [1,+ ) is a function. Let P;: Hx H — [0,+ o) be a function is an triple controlled metric-

Non-negativity.
Identity of indiscernibles (implies condition).
Symmetry.

Doublecontrolled boundedness.P( p, 6) <o(p, 6) P p, 0) +P(5, 0) Pit( 6, ) +a(0, 6) Pi( 0, 6)], for all p, o,
0,0 € H. The pair (H, Py,) is a triple controlled metric- like space.

A triple controlled metric- type space is also double controlled metric — like space in general. The converse is not

true in general.

Example [25]

Let H={0,1,2,3}. Condider the triple controlled metric-like P (p,0) : HxH—[0,0) defined by

Table 1
Pupo) [0]1] 2 | 3
0 1]1] 1 3
1 1]1] 2 1
2 1]2] 2 |13
3 311]113] 0
Taking a, B, y: HXH —[ 1,) to be symmetric and defined by
Table 2
a(po) | 0 1 |2] 3
0 1 1 | 1]4/73
1 1 1 [1]32
2 1 1 |[1]3
3 43132 13] 1
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Table 3
B(pso) | 0| 1 2 |3
0 1] 1 2 |1
1 1] 1 321
2 2132 1 |4
3 1] 1 4 |1
Table 4
vp,0) |O|1]2]3
0 L{1]1]1
1 1{1]2]1
2 1{2]1]3
3 1{1]3]1

One can easily show that (H,P,) is a triple controlled metric —like space rather than a triple controlled metric

space Py i(1,1)=1#0.
1. P(0,3)=3 > a(0,1)Pi(0,1)+B(1,3) Pi(1,3) = 1x1 +1x1 = 2.
Hence (H,Py) is not double controlled metric space not double controlled metric like space.
2. £11(0,3)=3 > a(0,1)P1(0,1)+0(1,3) Pr(1,3) = 1x1 +3/2x1 = 2.5
Hence (H,Py) is not controlled metric space not controlled metric like space.
3. P(0,3)=3 > a(0,3)[Py(0,1)+ Py(1,3)] = 4/3[1 +1 = 8/3.
Hence (H,Py) is not extended b-metric space not extended b-metric like space.
Definition [25] (Convergence and Cauchy Sequences)
Let ( H,P,) be a triple controlled metric -like space by one or two functions.

e Convergence: A sequence {c,} is convergent to some ¢ in H, if for each positive &, there is some integer Z, such

that P (6,,0) < ¢ for eachn =7,
It is written as lim,_,,, 6, = ©.

e Cauchy Sequence: A sequence {c,} is said Cauchy, if for every € > 0, Py (6,,0,,) < € for all m,n=>Z, where Z is

some integer.
o  Completeness: (H,P) is said complete if every Cauchy sequence is convergent.
Definition [25] (Continuity of Self- Mapping)
Let (H,P) be a triple double controlled metric like space by one or two functions for ¢ € H and [ > 0.
e  Open Ball: Define the open ball centered at ¢ with radius l as: B(o,1)=[y eH, P (0, y) <1}.

e Continuity of Self- Mapping: A self mapping T on H is said to be continuous at ¢ in H if for all § > 0, there
exists 1 > 0 such that T(B(o, 1)) € B(To,9).

This means that if you take point close to o, there image under T will be close to To.
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6 Shyam Sunder Prasad Singh
Finally, If T is continuous at ¢ in (H, ) , then the convergence of the sequences,, — ¢ implies that To, —»To
when n —o0.

e Lemma 2.1 [25] Let (H,P) be a triple controlled metric like space and assume a sequence {c,} in H. Then {c,}

is Cauchy sequence, then Py (6,,6,,) — 0 as n, m —ocowhere n,m & N.

e Lemma 2.2 [25] Let (H,P) be a triple controlled metric like space. Then a sequence {c,} in H is Cauchy

sequence, such that 6, # 6,,, whenever m # n. Then {c,} converges to at most one point.

e Lemma 2.3 [25] Let (H,Py,) be a triple controlled metric like space and assume a sequence {c,} in H. Then {c,}

is converges to o, then P, ( 5,,6) — 0 as n—oo,

e Lemma 2.3 [25] For a given triple controlled space (H, Py) , the triple controlled metric like function P,.;: H x H

— C is continuous,

e Lemma 2.4 [25] Let (H,P,) be a triple controlled metric like space. Limit of every convergent sequence in H is

unique, if thr functional P;: H x H —H is continuous.
RESULT

In this section, we introduce several types of interpolative contractions defined in the context of triple controlled metric-
like spaces. Specifically, we explore the (A, a)-interpolative Kannan contraction, the (A, a, b)-interpolative Kannan
contraction, and the (A, a, b, c)-interpolative Reich contraction. We also provide theorems related to Kannan and Reich

contractions, supported by examples.
Definition ((A, a)-interpolative Kannan Contraction)

A self mapping T on a set H is termed a ( k, a) — interpolative Kannan contraction, if there exist parametersk e[ 0,1). a ¢

(0,1) such that
P (To, Tp) < k(P (0, T6))" P (p. Tp )™ 3.1
forallo,pe H, witho # p.

Definition ((A, a,b)-interpolative Kannan Contraction)

A self mapping T on a set H is termed a ( k, a,b) — interpolative Kannan contraction, if there exist parameters, ke[ 0,1), a,

be(0,1), a+b<1 such that
P (To, Tp) < k (Pua (0, To))" P (p. Tp))’ 32
forallo,pe H, witho # p.

Definition ((A, a,b,c)-interpolative Reich Contraction)

A self mapping T on a set H is termed a (k, a,b,c) — interpolative Reich contraction, if there exist parameters k € [ 0,1), a,

b,ce(0,1),a+b+c <1 such that

P (To, Tp) < k(P (0,p)) P (0, T )* @i (p, Tp)) 33

forallo, pe H, withc # p.
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Theorem 3.1

Let ( H,P,) be a complete triple controlled metric like space.Aself mapping on a set H is termed a ( k, a) — interpolative

Kannan contraction. For o, ¢ H, take 6, = T"c,. Assume that
SUPmz11imi L ¥( 63, Gim) [ i1, Gir2)+ K B( 012, 6i13))/ [0 0, 6i1)+ KB( 0341, Gi2)< 1/k 34

We assume that ,for ¢ ¢ H, we have lim,_,®(c,, o), lim, .. ®(c, 6,),lim, .. D(c,, To)lim, ., DP(Tc , o,),

limy 0@ (G, On)
where ® € { a, B,y }, exist and finite for all n,m &€ N, m#n. .
Then T has a fixed point.
Proof
Define a sequence {o,} as 6,1 = To, for all n € N. Suppose that 6, # 6, for each n € N. Thus, by 3.1, we have
P (60 60e1) = Pt (TOw1, Tow) <k (Prat (G, TOw1))" (Pt (0, Tow)'™
=k (Pt (01, 02)" (Prat (G, 0e1)™
(Piet (Ony 61+1))" < k(Puct (On1 5 On))* 35
Since a < 1, we have

Py (Ony Onr1) < k" *(Pit (Gt » 0)) <k Pigt (Gt 5 Gn)

‘Ptcl (Gna Gn+1) S k ‘Ptcl (Gn-l 5 Gn) S k2 ‘Ptcl (Gn-Z s Gn—l) S k3 ‘Ptcl (Gn-3 s Gn-2)' .. S kn ‘Ptcl (00 s Gl) 36
Taking limit n—oo, we get 1im P (Gy, Gn+1) = 0. 3.7
Similarly, lim, . P (Gne1, Gn) = 0. 3.8

Thus, we two cases,
Case L. Suppose 6, # 6, foralln,m ¢ N . Let 6, = o, for m= n+r which r>0, and T o, = Toy, then,
Pyt (Ons Ope1) = Prct (s 1) = Pra (TOm-1, TOm) < kPect (G-t O)=< KPuct (Gt )< kPt (s Oine)
=k'Py1 (On, Opi1)
(1-K)Py (o4, 60+1)< 0, implies Py (o, To,) = 0.
Similarly P, (To,, 6,) = 0.Thus o,is a fixed point of T.
Case II
Suppose 6, # o, for all n,m € N. let n< m, and to show that {c,} is a right Cauchy sequence we consider two subcases,
Subcase I
For all n,m ¢ N and n <m, let m=n+2p+1 with

pzl"Ptcl (Gm 6m) = ‘Plcl (Gn, 6n+2p+1) < a(Gm Gnﬂ) P101 (Gm 6n+1) + B(cnﬂa 6n+2) ‘Ptcl (Gnﬂa 6n+2) + Y(Gn+25 6n+2p+1) Ptcl
(Gn+29 6n+2p+l) = (X(Gn, 0n+1) ‘Ptcl (Gna 0n+l) +B(Gn+la Gn+2) ‘Ptcl (Gn+19 6n+2) + Y(Gn+2a 0n+2p+1) { a(0n+25 6n+3) ‘Ptcl (Gn+2a 0n+3) +

B(Gn+3a Gn+4) ‘Ptcl (Gn+3s Gn+4) +Y(Gn+4a Gn+2p+1) ‘Ptcl (Gn+4s Gn+2p+1) }
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8 Shyam Sunder Prasad Singh

= a(Gna Gn+l) ‘Ptcl (Gns Gn+1) +B(Gn+ls Gn+2) =Ptcl (Gn+1a Gn+2) + Y(Gn+2a Gn+2p+1) (Z(Gm.z, Gn+3) ‘Ptcl (Gn+2a Gn+3) + Y(Gn+2a

Gn+2p+1) B(Gn+3a Gn+4) ‘Ptcl (Gn+3s Gn+4) +Y(Gn+2a Gn+2p+1) Y(Gn+4a 0n+2p+1) ‘Ptcl (Gn+4a Gn+2p+l) }

< &G, Gnit) K"Pyet (0o, 61) +B(Oni1s Oniz) K" 'Piet (o, 61) + V(Onizs Onizpr1) K(Gni2s Gniz) K™ “Piat (G0, 61) + V(s
Oniapi1) B(Onizs Onia) K™ Piet (G0, 1) +Y(Oni2s Gnizpe1) ¥(Onizps Onizpr1) K™ PPiet (Gos 61)} < &Gy Gnit) K'Pret (G0, 61) +B(Gni1,
Gui2) K™ Py (00, 01) + Z?:nzfz H;=n+z (0, Guzps (G5, Gi41) K+ B(Ois1, 6342) k1P (00, 07)

+ I2e8;  ¥(0h Gneapit) K" PPy (00, 61) 3.7

Since, suppeilim, ¥(0), 6m) [0(0is1, Gir2) +K B(Gir2, Gix3) V[a(oy, Gir1) +k (031, Oi2) < 1K,

Then, the series

21 ITici (05 Onizprt) [a(0y, O11) +k P01, Gie2) Ky (50, 61) 3.8

Converges by ratio test, implies that Py(G,, Griopt1) converges as n—oo.

Let S,=724 5‘:1 (G}, Gnizpt1) [A(Gi, Gis1) Tk P(Giv1, Oix2) Ik Pit (00, ©1) 3.9

Then equation 3.7 taks the following form

P101 (Gn, 6m) < [(X(Gn, GnH) kn+ B(Gnﬂa Gn+2) ]kn+1+ Sm—l - Sn+1] =Ptcl (607 Gl)

+ H?:;ffz Y(Gja Gn+2p+l) knJrzp‘Ptcl (GOa Gl) 3.10
Taking the limit in 3.10 as, n,m—oo, implies limy, , P (Gn, O) = 0. 3.11

Subcase I1
When m= n+2p, first p=1, we have
Piat (Ony Om) = Pict (Ony Ous2) = Prct (TOw1, TOwni1) < kPrct (O, Gaie))< Kot (G2, On)... < K™yt (00, 62)
Implies that,
Py (04, Om) —0 as n—oo.
When p>1, similarly to subcase I, we have

P101 (Gn, cm) = =Ptcl (Gm 6n+2p) < (X(Gn, 6n+2) PIcl (Gna 6n+2) + B(GnJrZa 6n+3) Plcl (0n+25 6n+3) + Y(Gn+37 6n+2p) Ptcl (0n+37
6n+2p)
< (X(Gn, Gn+2) ‘Plcl (Gm Gn+2) +B(Gn+25 Gn+3) ‘Plcl (Gn+25 Gn+3) + Y(cn+37 Gn+2p) { (X(Gn+3, Gn+4) Ptcl (6n+37 Gn+4) + B(cn+47

6n+5) ‘Ptcl (Gn+4a Gn+5) + 'Y(Gn+5, Gn+2p) ‘Ptcl (Gn+55 6n+2p) }

= a(cna 6n+2) ‘Ptcl (Gns 0n+2) +B(Gn+25 0n+3) ‘Ptcl (Gn+2a 6n+3) + Y(Gn+3a 6n+2p) a(6n+3a Gn+4) ‘Ptcl (Gn+3a 6n+4) +

Y(Gn+3a Gn+2p) B(Gn+4a Gn+5) ‘Ptcl (Gn+4s Gn+5) +Y(0n+3a Gn+2p) Y(Gn+55 Gn+2p) ‘Ptcl (Gn+5a Gn+2p) }

2 +2p—-1 i
< (O, Oe2) K*Piet (60, 62) +B(Oni2, Onis) K" “Pyy (00, 01) + Xi 1 j=n+3  Y(0j, Oniap) [0y, Oi1) + kB(Ois1,
i +2p—1 2p-1
Gi+2)]k1‘Ptcl (GOa Gl) + H?:nf:g Y(Gja Gn+2p) kn+ P ‘Ptcl (005 01) 3.12

Since, Suppe1lim;_y(ir1, Om) [0(Oi41, Gira) Tk PB(Ois2, 6143) 1[0y, 6i41) Tk P01, Oiz) IS 1k,
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Then,the series

T2y [licr ¥ 6nizp) [(0i, 6i11) Tk B(Gis1, Giv2) IK' Pt (00, 01) 3.13
Converges by ratio test, implies that Py¢(G,, G,12p) converges as n—oo.

Let S= 25:1 H§=1 Y(6j, Onizp) [0y, i) K B(Gir1, Gisz) ]ki Py (00, 01) 3.14

Then equation 3.12 takes the following form

Py (Gny Om) < WG, Onia) K*Piet (G, 02)F PB(Gnizs Gniz) IK™ > Pt (G0, 61)F (St — Suia) it (00, 61)

+ 11} onta V(05 Ouizp) K2 Py (00, 01) 3.15
Taking the limit in 3.10 as, n,m—oo, implies limy, n—,Pie1 (G, Gn) = 0. 3.16

Thus by subcase I and subcase II, we get {c,} is a right Cauchy sequence. Similarly we prove same as left Cauchy
sequence. Since (H,Py) is complete triple controlled metric — like space. So, {c,} converges to o€ H. Thus lim,_,..P (o4,

6) = lim,_, P (6,6,) = limp o Pict (Oims 61) = limy ysePicr (O, Gy) = 0. 3.17
Existance of Fixed Point
Now, let o is a fixed point of T. Suppose that =Pw1(cs*, TG* )>0 and ‘Pwl(Tc*, o ) > 0. Then we get
Pu(To', 6 ) <a(To’, ToPu(To", T 60) + B(T 60,0)Pci(T 61,00) + ¥( 616 Puc( 01,0 )
< o(To", op)kPia(0’s 6) + B( Oni1,0nPea(Gne1,0m) + (60,0 WPrai( 0,0) and
P(c’, To ) < alo’, o)Pu(o’, 6,) + B 00 To) P 05 T0n) + (T, To )Pu( To,To)
< (0’ 6)Pu(0 s ) + B( GnsOni)Prci(GnOni1) + V(03,0 DkPrai( 00,0
Taking m,n—o0 and using 2.5,2.6, 2.17, we get =P[C1(Tc*, o )= =Pw1(cs*, TG* )= 0. Implies
To =0 isa fixed point of T.
Uniqueness of Fixed Point
Now, we prove the uniqueness of 6. Let p* be another fixed point of T inH, then by 3.1, we have
Pevaet (6%, p*) =Pevaet (To*, Tp*) <k [Pevaet (6%, To*) I' [Pevaet (p*, Tp™)]™ =0.
Implies, 6* = p*. Complete the proof.
Example

LetH = {0,1,2,3}. Condider the triple controlled metric-like P (p,5): HxH—[0,00) defined by

Table 5

Palpo) |0 1] 2 | 3
0 111 ]3
1 112 ]1
2 1212 |13
3 3111310
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Taking a, B, y: HxH —[1,%) to be symmetric and defined by

Table 6
apo) | 0 1 12| 3
0 1 1 | 1]4/53
1 1 1 | 1]32
2 1 1 |1] 3
3 43 1323 1
Table 7
B(po) | 0| 1 2 |3
0 1|1 2 |1
1 11 ]32]1
2 2 (32| 1 |4
3 1|1 4 |1
Table 8
Y@p0) (0123
0 1{1]1]1
1 1{1]2]1
2 112|113
3 1]1|3]1

Let a mapping T: H—H, such that, TO=T1 =T2 = T3 =3, next, we will verify the condition 3.1:
Case 1
Wheno=0,p=1,

‘PICI(TG,TP) = ‘Ptcl(TosTl) = ‘Ptcl(3s3): 0<k ‘Ptcl(oiTO)a ‘Ptcl(LTl)l_a: k [‘Ptcl(093)]a[‘Ptcl(l53)]1-a =k 3% 11'3 = k'3a§
K[ Pr(0.To)] [Pua(p.TP)]™

Case 2
Wheno=0,p=2,

Pu(To,Tp) = Pu(TO,T2) = Pu(3,3)= 0 < k P(0,T0)* Pi(2,T2)"™ =k [P(0,3)]'[Pi(2,3)]™ =k 3* (1/3) <k
[Pu(0,TO)]" [Pra(p,Tp)]™

Case 3
Wheno=0,p=3,

Po(To.Tp) = Pra(T0.T3) = Pui(3.3)= 0 <k Piy(0,T0)* Pi(3.T3)™ =k [Pi(0,3)]'[Pici(3.3)]'™" = 0 < k[ Pyoi(0.To)]*
[‘Ptcl(p’Tp)] e

Case 3
Wheno=0,p=0,

Po(To,Tp) = P(T0,T0) = Pi(3,3)= 0 < k Py(0,TO)* Pyi(0,70)™ = k [P(0,3)]'[P(0,3)]™" = k 3° 3"< k[
P(0,To)]" [Pulp,Tp)]™

Impact Factor (JCC): 6.2284 NAAS Rating 3.17
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Case 5
Wheno=1,p=0,

P(To,Tp) = Pa(T1,T0) = Piy(3,3)= 0 < k Pi(1,T1)* P(0,T0) ™ =k [Pret(1,3)]'[Peer(0,3)] ™ =k 1% 3" = k3"
K[ Pi(0,T0)]" [Pra(p,Tp)]™

Case 6
Wheno=1,p=2,

P(To,Tp) = P(T1,T2) = Py(3,3)= 0 < k P(1,T1)* Py(2,T2)"* =k [Pia(1,3)]'[Pa(2,3)]™ =k 1% 1/3< K[
Po(0.To)]* [Put(p. TP)]™

Case 7
Wheno=1,p=3,

Po(To,Tp) = P(T1,T3) = Pi(3,3)= 0 <k Piy(1,T1)* P(3,T3)"™ =k [Pra(1,3)][Pra(3,3)]™ = 0 < k[ (0, To)]*
[Pa(p,Tp)]"™

Case 8
Wheno=1,p=1,

P(To,Tp) = P(TL,T1) = Py(3,3)= 0 < k Py(1,T1)* Py(1L,TDH™ = k [P(1,3)]'[P(1,3)]™ =k 1% 1< K[
Pr(0. T [Pua(p, TP

Case 9
Wheno=2,p=0,

P(To,Tp) = Pe(T2,T0) = Py(3,3)= 0 < k Py(2,T2)* P,i(0,T0)™ =k [P1i(2,3)]'[Pr(0,3)]* =k (1/3)%. 3" < k[
P(0,To)]" [Pulp,Tp)]™

Case 10
Wheno=2,p=1,

P(To,Tp) = P(T2,T1) = Pa(3,3)= 0 < k Py(2,T2)" Poe(1,TDH'™ =k [Pi(2,3) 1 [Pia(1,3)] = k (1/3)". 1" < K[
Pu(0,To)]* [Pualp,Tp)]"™

Case 11
Wheno=2,p=2,

Pia(To,Tp) = Pu(T2,T2) = Pu(3,3)= 0 < k Pi(2,T2)" Pa(2,T2)™ =k [Pra(2,3)I'[Pua(2,3)] =k (1/3)". (1/3)" <
k[ Pra(0,To)]" [Pua(p,Tp)] ™

Case 12
Wheno=2,p=3,

P(To,Tp) = Pe(T2,T3) = Pra(3,3)= 0 < k Py(2,T2)" Poei(3,T3)"™* = k [Pi(2,3)[Pia(3,3)]™ = k (1/3)". 0" < K[
Pu(0,To)]* [Pualp,Tp)]"™
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Case 13
Wheno=3,p=0,

P(To,Tp) = P(T3,T0) = P(3,3)= 0 < k Py(3,T3)" Pi(0,TO)'™ = k [P(3,3)]'[Pa(0,3)]'" =k 0% 3'"< k[
P(0,To)]" [Pulp,Tp)]™

Case 14
Wheno=3,p=1,

P(To,Tp) = P(T3,T1) = Py(3,3)= 0 < k Py(3,T3)* P(L,TDH™ =k [P(3.3)]'[Pw(1,3)]"™ =k 0% 1< K[
Pr(0.To)] [Pual(p, TP

Case 15
Wheno=3,p=2,

Po(To,Tp) = P(T3,T3) = Pu(3,3)= 0 < k Py(3,T3)* P(2,T2)"* =k [Pra(3,3)'[Peai(2,3)]™ = k 0. (1/3)" < k[
P(0,To)]" [Plp,Tp)]™

Case 16
Wheno=3,p=3,

P(To,Tp) = P(T3,T3) = Py(3,3)= 0 < k Py(3,T3)* Pu(3.T3)™ =k [P(3.3)]'[Pw(3.3)]"™ =k 0% 0"*< k[
Pr(0. T [Pua(p, TP

For all k € (0,1), It is clear that all the conditions of theorem 3.1 are satisfied. Therefore , there exists a unique

fixed point 3 of T.
Theorem

Let (H,P,;) be a complete triple controlled metric like space. A self mapping T on a set H is termed a ( k, a,b) —

interpolative Kannan contraction. For o, € H, take o, = T"c(. Assume that
SUPmz11im; o0 Y( 63, Gim) [0 Gis1, Gi2)+ k B( iz, 613))/ [a( 0, O 1)F KB( 641, Op) < Tk 3.18
We assume that ,for 6 € H, we have lim,_.,®(c,, 6), lim,_,®(o, 6,), lim, ., ®(c,, To), lim,_.P(To , 6,),
limy @ (01 , 6,) where @ € { o, B,y }, exist and finite for all n,m € N, m#n. .
Then T has a fixed point.
Proof
Define a sequence {c,} as 6,1 = To, for all n € N. Suppose that 6,,; # 6, for each n € N. Thus ,by 3.2, we have
P (1, Oe1) = P (TO01, Tow) <k @it (G, T6r1))* (Puc (00 TOw)" =k (Puc (61, 0))" (Pt (O Ger))”
(Piet (O, 1) < k(Pict (G015 67))° 3.19
Since atb< 1, we have

‘Ptcl (Gna Gn+1) < kl/l_b(‘Ptcl (Gn-l 5 Gn)) < k ‘Ptcl (Gn-l 5 Gn)

Impact Factor (JCC): 6.2284 NAAS Rating 3.17
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‘Ptcl (Gna Gn+1) S k ‘Ptcl (Gn-l 5 Gn) S k2 ‘Ptcl (Gn-Z s Gn—l) S k3 ‘Ptcl (Gn-3 s Gn-2)' .. S kn ‘Ptcl (00 s Gl) 320

As already elaborated in the proof of theorem 3.1, the classical procedure leads to the existence of a fixed point ¢~
e H.
Theorem

Let (H,Py,;) be a complete triple controlled metric like space. A self mapping T on a set H is termed a ( k, a,b,c) —

interpolative Kannan contraction. For o, € H, take o, = T"c(. Assume that
SUP =1 1iMio Y( O, Gim) [0 Oiv1 , Oi2)+ K B( Giva, G543))/ [0 O3, Gix1)+ kB( G341, Gi2) < 1/k 321
We assume that ,for 6 € H, we have lim,_,.,®(c,, 6), lim,_,®(o, 6,), lim, ., ®(c,, To), lim,_.P(To, 6,),
limy @ (01 , 6,) where @ € { o, B,y }, exist and finite for all n,m € N, m#n.
Then T has a fixed point.
Proof
Define a sequence {c,} as o,+; = To, for all n € N. Suppose that 6,,; # 6, for each n € N. Thus ,by 3.3, we have
P (0, o11) = P (Ton1, Tow) <k Prat (0015 00) ) Pret (001, Ton1)" (Prct (00, o))"
=k (Pt (G015 60)'Pua (On1, 6)°(Puct (G, G)*
(Pt (O, Gi1)) ™ < k(®rat (G, 0)"™ 3.22
Since atb+c< 1, we have
Pt (On, 601) < K “(Puat (001, 61)) <k Pt (On1, 01)
Piet (s 1) < kP (O 64) < K2 Pyt (Gnz, ) < K Pig (O3 6n2)--. < K" Py (00, 01) 3.23
As already elaborated in the proof of theorem 3.1, the classical procedure leads to the existence of a fixed point 6"
e H.
CONCLUSIONS

In this paper, we explore fixed point results in the context of triple controlled metric-like spaces, building on the
foundational results presented in [20]. Our findings extend the work previously documented by providing a more

generalized framework that encompasses and elaborates on the fixed point theorems of Kannan and Reich types.

We begin by outlining the properties of triple controlled metric-like spaces and presenting examples that illustrate
these concepts. These examples not only support our theoretical results but also demonstrate the practical implications of

our findings in mathematical analysis.

Our contribution lies in enhancing the understanding of double controlled metric-like spaces, which play a
significant role in various fields of mathematics. By establishing fixed point results within this broader context, we aim to

bridge gaps in the existing literature and provide a solid groundwork for further research in this area.
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Overall, this work not only generalizes the results of [20] but also opens new avenues for exploration within the

framework of metric-like spaces and their applications in mathematical analysis and related disciplines. We encourage

further investigation into these spaces and their properties, as well as their implications in other mathematical contexts.
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